
JOURNAL OF COMPUTATIONAL PHYSICS 138, 981–990 (1997)
ARTICLE NO. CP975813

NOTE

The LASY Preprocessor and Its Application to
General Multidimensional Codes

1. INTRODUCTION

In this paper a new preprocessor using the loop annotation syntax is described.
One of the possible applications of this syntax is writing a general simulation
code where the number of grid dimensions is a parameter of the preprocessor.
Programming language constructs, which would be normally repeated for each
dimension separately, are annotated as loops in the syntax, and these loops can be
expanded by the preprocessor. The preprocessor overcomes some of the inherent
limitations of most computer languages, such as the fixed number of indices for
arrays. In general the typical expressions used in multidimensional simulation codes
can be written in a way that is more concise and less prone to error. The preprocessor
is implemented in the Perl language which is available for almost all operating
systems.

The loop annotation syntax (LASY) was developed as part of the versatile
advection code (VAC) [1, 2] software package which can solve conservation laws,
e.g. of hydrodynamics and magneto-hydrodynamics on one, two, and three-dimen-
sional grids. The usual practice is to write a simple 1D code first, then to modify
it for 2D simulations, and finally, years later, to rewrite the whole code for 3D. In
the VAC project a different route was taken, namely a single general software was
designed from the beginning, which can do simulations in any number of dimensions.
(The acronym LASY should be pronounced with a z, since laziness if ‘‘the first
great virtue of a programmer’’ [3]).

In object oriented languages, such as C11, it would be possible to define objects
which are arrays with Ndim dimensions (where Ndim is a parameter) and then to
define operations acting on these objects. The natural choice for the source language
of VAC was, however, Fortran because extensive libraries and efficient compilers
are available, and because the potential users of the code are familiar with Fortran
but not with C11.

To circumvent the limitation that the number of array dimensions has to be
known by the Fortran compiler, the LASY preprocessor translates the dimension
independent source program to a standard Fortran code with a given number

981

0021-9991/97 $25.00
Copyright  1997 by Academic Press

All rights of reproduction in any form reserved.

982 NOTE

of dimensions Ndim , which is an adjustable parameter for the preprocessor. The
preprocessor does not try to understand the semantics of the code, it simply gener-
ates the correct syntax by repetition and substitution. For example, the three indices
of an array can be regarded as three variants of the same general index string
separated by commas. Similarly the sum of these indices can be interpreted as the
three substitutes of the general index separated by plus signs. Unlike the object-
oriented approach, where one has to define a new operation or generalize an existing
one for all the possible cases that involve dimension independent objects, in the
preprocessor approach one needs to recognize the loops in the syntax and annotate
them appropriately.

During the course of the software development it was found that the preprocessor
can be efficiently used for other loop-like expressions as well, such as operations
on the minimum and maximum of certain values. Thanks to the very general rules
of LASY this simply required the introduction of a few new preprocessor variables
with two substitutes, e.g. the strings min and max. The preprocessor can probably
have numerous different applications, some of which may require slight modifica-
tions or extensions of the basic rules, but the concept of syntax loops seems to be
very powerful.

It is also interesting to note that the translated code is usually quite efficient.
One can, for example, use Ndim scalars n1, n2 ..., instead of an array with Ndim

elements n(ndim), which would be the general solution in Fortran. While it takes
some time to get used to the LASY notation, it becomes quite natural with experi-
ence. The fact that the rather complex VAC software, which is approximately 10,000
lines long, could be designed, implemented, and tested in about one year, proves that
the preprocessor is practical and reliable. The preprocessor has been implemented in
the Perl language [3] which is available for almost all computers and operating
systems. The source code of the LASY preprocessor, which is about 300 lines,
and a detailed description of the actual implementation are freely available from
the author.

In Section 2 the general loop annotation syntax is defined for simple syntax loops,
while Section 3 presents rules and examples for more complex cases. In Section 4
some practical considerations of the implementation are discussed. Conclusions
based on my experience with LASY are given in Section 5.

The examples presented in this paper are based on the source code of the versatile
advection code. The VAC source uses more features and variables of LASY than
I describe here, and the examples shown in the paper are not meant to be the most
efficient or elegant way of solving the problems, they simply demonstrate the use
of LASY.

2. SIMPLE SYNTAX LOOPS

The LASY preprocessor extends the syntax of the original computer language,
which I will refer to as the base language. The extensions should not interfere with
the syntax of the base language, therefore the preprocessor directives are either
disguised as comments in the base language, or the extensions are distinguished by
some special characters, e.g. ‘‘#,’’ that do not occur in the base language. LASY

983NOTE

uses the latter approach, and the special characters chosen do not occur in Fortran
90 (or Fortran 77) statements, except for quoted text or comments. This choice is
not wired into the preprocessor at all. The special characters can easily be replaced
by others, and even by longer strings although the latter may require some minor
modifications. In the following I use the special characters that were chosen for
the Fortran base language.

The most important special character in LASY is ^ which precedes the preproces-
sor variables. Such a variable represents a number of substitute strings, thus it will
be referred to as a pattern. For example the

(1)^D R 1, 2, ...
  

Ndim

rule simply means that the ^D pattern is replaced by either 1, or 1 and 2, or 1, 2,
and 3, depending on the value of Ndim. Another rule may have a fixed number of
substitutes, e.g.,

^LIM R min,max (2)

In general a pattern consists of the special pattern character ^ followed by one
capital letter, followed by zero or more characters which can be capital letters or
the characters & and %. More formally, using the notation of regular expressions:

pattern ::5 ^[A 2 Z][A 2 Z&%]* (3)

This particular choice of the character sets (denoted by [...]) is not an essential
feature of LASY, but it was convenient for our applications. Capital letters are
convenient since the Fortran code can be written in lower case letters, and the base
language and the language extensions are then well separated visually. The use of
the % and & characters will be explained later.

Patterns in general are defined by their substitution rules

pattern R sub1, sub2, ..., subN (4)

where sub1, sub2, ..., subN are N arbitrary strings, and N is a nonnegative
integer. These substitution rules are defined in the initialization part of the prepro-
cessor, and rules can be easily modified or added according to the needs of the
application. Choosing good pattern names and substitution strings is a responsibility
of the programmer. In this paper the rules used for the VAC source code are shown
as particular examples.

The patterns behave like the index variables of the syntax loops. The most
complete form of a syntax loop consists of a special opening character ‘‘h’’ followed
by program text txt in the base language mixed with patterns, then a special
separator character ‘‘u’’ which precedes the separator string sep, and finally a special
closing character ‘‘j’’:

984 NOTE

loop ::5 htxt pattern txt u sepj (5)

A loop can extend over several lines, and the opening and closing curly braces
have to match. The substitution rule for the loop is

loop R txt sub1 txt sep txt sub2 txt sep ? ? ? txt subN txt (6)

To put it in words, the part between ‘‘h’’ and ‘‘u’’ is repeated as many times as the
pattern has substitutes. In each repetition the corresponding substitute of the pattern
is used, and the repetitions are separated by the separator string enclosed by the
‘‘u’’ and ‘‘j’’ characters. The following example shows three syntax loops with Fortran
base language and their expanded forms using the pattern definitions (1) and (8)
for the case Ndim 5 2:

hdo ix^D 5 1, 10u; j R do ix1 5 1, 10; do ix2 5 1, 10

w(hix^Du, j) 5 0 R w(ix1, ix2) 5 0

henddo^D&u; j R enddo; enddo

(7)

There is a new pattern ^D& in the last line with the substitution rule

(8)^D& R ‘’, ‘’, ..., ‘’

  

Ndim

i.e., it is substituted by Ndim empty strings, denoted by ‘’. The purpose of introducing
this pattern is to define the number of repetitions, in this case the number of
enddo’s, separated by semicolons. The use of the & character in the pattern name
^D& is a matter of taste, it could have just as well been called ^DEMPTY or ^DTIMES.

Although the dimension independent notation in (7) is already shorter and more
general than the expanded form for two dimensions, it can be simplified further.
In LASY there are two ways of defining the separator string without using the
special character ‘‘u’’ in the loop. If some common separator character s is found
at the very end of the loop, it is interpreted as a single character separator string.
Otherwise the comma is used as default separator, which is the most commonly
needed separator in Fortran,

htxtpatterntxt sj Rtxtsubltxt stxtsub2txt s ? ? ?txtsubNtxt
(9)

htxtpatterntxtsj Rtxtsubltxt,txtsub2txt, ? ? ?txtsubNtxt

where s ::5 [b 1 2 * /, :; u] for the particular version of LASY used for the VAS
source code, and b denotes the space character. The subscript in txts simply means
that the last character cannot be one of the common separator characters. The u
separator character is replaced by a new line in the output. Note that the separator
can still be defined as an empty string with the full form (5) of the loop, i.e. htxt
pattern txtuj.

985NOTE

A further and more important simplification of the notation is that the preproces-
sor can expand patterns without the enclosing special characters ‘‘h’’ and ‘‘j’’. A
pattern in itself implies a loop which is bounded by the typical delimiter characters
of the base language. For Fortran the following characters were chosen: space,
comma, semicolon, and enclosing parentheses found at the same nesting level of
parentheses, and the beginning or the end of the line. By a formal definition, an
implied syntax loop is

implied–loop ::5 ltxtl pattern txtr r

ltxtl pattern txtr sepr r
(10)

where l ::5 [b, ; (] and r ::5 [b, ;)], and the l and r indices mean that txt or sep
cannot contain any left and right limiter characters unless they are enclosed in
parentheses. An implied loop cannot extend over more than one line. Implied loops
are expanded the same way as loops delimited by curly braces (see (6)), except
that the bounding characters l and r, which belong to the base language, are retained.
It was also found convenient (see (23)) to force the separator to be a semicolon
when the right delimiter is a semicolon, i.e.

ltxtpatterntxt;Rltxtsubltxt;txtsub2txt; ? ? ?txtsubNtxt; (11)

As an example here are some variable declarations and a Fortran do loop similar
to (7):

integer, parameter :: nx^D 5 10 R integer, parameter ::

nx1 5 10, nx2 5 10

integer :: ix^D R integer :: ix1, ix2

real :: w(nx^D) R real :: w(nx1, nx2)

hdo ix^D 5 1, nx^Duj R do ix1 5 1, nx1

w(ix^D) 5 0. do ix2 5 1, nx2

enddo^D&u R w(ix1, ix2) 5 0.

R enddo

enddo (12)

At a level of abstraction higher than those of patterns and syntax loops, one may
regard nx^D and ix^D as the generalized multi-D array dimension and index, re-
spectively.

LASY can perform the most basic preprocessor tasks as well. A constant variable
can be defined as a pattern with a single substitute string, while the conditional
inclusion of program text is obtained by a syntax loop which includes the program
text and a pattern that has 0 or 1 nulstring substitutes depending on the condition.
Two simple examples are

986 NOTE

^ND R Ndim (13)

^IFONED R ‘’ (14)

  

0 or 1

where the number of substitute empty strings for ^IFONED is 1 for Ndim 5 1 and
0 otherwise. See (25) and (22) for examples of usage.

3. MULTIPLE SYNTAX LOOPS

The possibility of having more than a single kind of patterns triggers a number
of questions. What happens if there are more, possibly different, patterns in a loop?
What about nesting syntax loops? What happens if a substitute string contains
further patterns? The answers to these questions are given in the following
LASY rules:

● The number of repetitions is determined by the first pattern in the (implied)
syntax loop, and only patterns with the same initial letter are substituted.

● In the case of nesting, the outermost loop is expanded first as if it was a
simple loop.

● The expansion continues until no patterns are left.

These rules were formulated to accommodate the applications but one may find
some further justification for them. Since LASY is syntax oriented, it is reasonable
that the rules do not refer to the meaning of the patterns (one could have introduced
some precedence of patterns, for example). Both the first and the second rules
imply a natural left-to-right translation order, and this translation is repeated, if
necessary, according to the third rule. The following implied double loop uses the
pattern definitions (1), (2), and it expands according to the above rules:

w(ix^LIM^D:) R w(ixmin^D : ixmax^D)

R w(ixmin1 : ixmax1, ixmin2 : ixmax2) (15)

An even more compact way of writing array segments is by introducing the ^S
pattern

(16)^S R ^LIM1:, ^LIM2:, ...

  

Ndim

and thus the third rule implies

w(ix^S) R w(ix^LIM1 :, ix^LIM2:)

R w(ixmin1 : ixmax1, ixmin2 : ixmax2) (17)

987NOTE

In loops where one of the repetitions should be very different from the others,
a selector starting with the special characters ^% is used:

selector ::5 ^%I (18)

where I 5 1, ..., Nmax is a positive integer, and Nmax is the maximum number of
substitutes for all defined patterns. Loops that contain a selector will expand the
text (with patterns) that precedes the selector in the Ith repetition and will expand
the text (with patterns) that follows the separator in all the other cases. Formally,
although not in its most general form, the substitution rule is

txtI pattern txtI^%I txtO

R txtO , txtO , ..., txtI subI txtI , txtO , txtO , ... (19)

     

I21 N21

In general the first pattern may occur after the selector, or there can be patterns
(with identical initial letters) both before and after the selector, then txtO will be
mixed with substitutes sub1, ..., subN with the exception of subI. The loop may
be defined by special characters (5) or implied by delimiter characters of the base
language (10), and the separator string can be defined as in (6), (9), or (11).

In most cases the selectors are not used directly, but they occur rather as substi-
tutes of some other pattern, e.g.

(20)^D% R ^%1, ^%2, ...

  

Ndim

As an application I show a short piece of Fortran 90 code that sets certain elements
of the w array to zero. The selected array elements are located at the two grid
boundaries orthogonal to the idim direction. The main syntax loop is for the ^D
pattern, next the loops implied by the ^S patterns are expanded in two steps

select case(idim) R select case(idim)
hcase(^D) R case(1)

w(ixmin^D^D%ix^S) 5 0. w(ixmin1^%1ix^S) 5 0. R

w(ixmax^D^D%ix^S) 5 0.uj w(ixmax1^%1ix^S) 5 0. R

end select case(2)

w(ixmin2^%2ix^S) 5 0. R

w(ixmax2^%2ix^S) 5 0. R

R end select

988 NOTE

(21)

select case(idim) select case(idim)

case(1) case(1)

w(ixmin1,ix^LIM2:)50. R w(ixmin1,ixmin2:ixmax2)50.

w(ixmax1,ix^LIM2:)50. R w(ixmax1,ixmin2:ixmax2)50.

case(2) case(2)

w(ix^LIM1:,ixmin2)50. R w(ixmin1:ixmax1,ixmin2)50.

w(ix^LIM1:,ixmax2)50. R w(ixmin1:ixmax1,ixmax2)50.

end select end select

To end this session I present another idiomatic LASY expression, the shift of array
segments in the idim direction. Although this could be achieved with the above
case construct as well, introducing a global Ndim 3 Ndim Kronecker delta matrix

integer :: kr(^ND, ^ND) R integer :: kr(2,2)
kr 5 0; hkr(^D, ^D) 5 1;j R kr 5 0; kr(1, 1) 5 1;

kr(2, 2) 5 1 (22)

somewhere in the initialization part of the program can be used in a single line
expression for the shift:

jx^LIM^D 5 ix^LIM^D 1 kr(^D, idim); R

jxmin1 5 ixmin1 1 kr(1, idim);

jxmin2 5 ixmin2 1 kr(2, idim);

jxmax1 5 ixmax1 1 kr(1, idim);

jxmax2 5 ixmax2 1 kr(2, idim); (23)

The intermediate step of the expansion of the ^LIM implied loop is not shown,
and the rather long expanded line is broken into shorter pieces for clarity.

4. IMPLEMENTATION OF THE LASY PREPROCESSOR

The preprocessor has to take care of quoted text. In my implementation of the
LASY preprocessor the first bit of all the characters of the quoted text is set to 1
before any processing is done, and just before the output is printed the first bit is
set back to 0. In this way the characters in the quoted text have ASCII codes
above 127 during the preprocessing, and there can be no confusion with the special
characters of LASY.

Another advantage of hiding the quoted text is related to the formatting of the
output. The length of a line can expand significantly during the preprocessing, so
it may need to be broken into shorter pieces, preferably at well chosen breaking
points. The best breaking points are guessed by looking for characters like [1 2

*/,] near the intended location of the line break. The original quoted text may

989NOTE

easily contain these characters, but a line may not be broken in the middle of a
quotation. The quotation-hiding mechanism outlined above prevents this hap-
pening.

Error messages and warnings of the base language compiler always refer to line
numbers of the preprocessed code which is usually different from the corresponding
line number in the original code. Thus the expanded code should be easy to read.
Therefore the original indentation is retained and the preprocessor attempts to
break the lines into more or less logical parts. Good formatting of the output helps
the user to understand the preprocessed code.

The preprocessor also provides the facility of including other LASY files. A
line containing

INCLUDE : file (24)

will be replaced by the contents of file. Included files may contain references to
further included files themselves. The inclusion of the file may be made conditional
by enclosing it with a syntax loop

h^IFONED INCLUDE : filej (25)

Note that the syntax of INCLUDE: is intentionally different from the include state-
ment of the Fortran base language.

The definition of patterns is fairly simple in the Perl source code of the preproces-
sor. The patdef Perl subroutine is called with the pattern name, the number of
substitutes, and a list of substitutes with an arbitrary number of elements. The extra
elements are simply ignored, while missing elements are taken to be empty strings.
Here are the subroutine calls that correspond to the pattern definitions (1, 2, 8, 13,
14, 16, and 20)

$ndim 5 2;

&patdef(’D’ , $ndim , 1 , 2 , 3);

&patdef(’LIM’ , 2 , ’min’ , ’max’);

&patdef(’D&’ , $ndim);

&patdef(’ND’ , 1 , $ndim);

&patdef(’IFONED’ , $ndim 55 1,);

&patdef(’S’ , $ndim , ’^LIM1:’ , ’^LIM2:’ , ’^LIM3:’);

&patdef(’D%’ , $ndim , ’^%1’ , ’^%2’ , ’^%3’);

(26)

where the $ndim 55 1 expression equals 1 if $ndim is 1, and 0 otherwise.

5. CONCLUSIONS

Writing a LASY code is not as complicated as it may seem for some of the
examples. In the overwhelming majority of cases the simplest implied loops are

990 NOTE

used with the most common patterns like ^D or ^S. More complicated expressions
can be easily checked by running the preprocessor interactively; i.e., the LASY
code is typed in via standard input and the translated code appears on the standard
output. After a loop is found to work properly it soon becomes an idiomatic
expression which can be remembered without thinking about the details of the
expansion. In writing multidimensional codes a typical source of bugs results from
copying an expression for a certain dimension or index several times and forgetting
to do all the necessary changes afterwards. In LASY this cannot happen since the
repetitions and modifications are done by the preprocessor automatically and free
of typing errors.

Since LASY is an extension of the base language one may add code in the base
language without difficulty; e.g., subroutines for a particular number of dimensions
can be written without knowledge of the loop annotation syntax. This is an important
feature for users of the code who do not need to learn LASY.

For the programmer LASY offers a compact, efficient, and general notation,
which can be learned easily and extended or modified according to the arising
needs; therefore it truly serves the virtue of laziness.

ACKNOWLEDGMENTS

The software development of LASY and VAC was done as part of the project of massive parallel
processing applied to magnetohydrodynamics, which is funded by the Dutch Science Foundation (NWO).
The author also received partial support from the Hungarian Science Foundation, Grant F 017313.

REFERENCES

1. G. Tóth, A general code for modeling MHD flows on parallel computers: Versatile advection code,
Astrophys. Lett. & Comm. 34, 245 (1996).

2. G. Tóth, Versatile advection code, in Lecture Notes in Computer Science, Proceedings, HPCN 97’,
Vienna, Austria, April 28–30, 1997, (Springer-Verlag, New York/Berlin, 1997), Vol. 1225, 253.

3. L. Wall and R. L. Schwartz, Programming Perl (O’Reily, Sebastopol, USA, 1992), p. 426.

Received July 19, 1996; revised February 12, 1997

Gábor Tóth
Sterrenkundig Instituut
Utrecht, The Netherlands
E-mail: toth@fys.ruu.nl

Present address: Dept. of Atomic Physics, Eötuöś University, Budapest, Hungary. E-mail: gtoth@
hercules.elte.hu.http:/ /tys.ruu.nl/ptoth.

